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ABSTRACT 

The development and incorporation of the latest enhancements to the AVAST code are 

described. The purpose of this work was to make the modelling of the physical environment more 

realistic, while ensuring that the code runs as efficiently as possible. To this end, several new features 

have been added. These include the implementation of a four-noded acoustic panel element and the 

development of an eigenvalue extraction technique suitable for equations generated by the boundary 

integral equation method. In addition, the option to use structural response data generated by the 

COUPLE program has also been incorporated. 
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1.1 

1. INTRODUCTION 

Phases I through IV of the DREA/Martec collaborative investigation in underwater acoustics 

has resulted in the development of a series of computer programs, collectively named AVAST, for the 

numerical prediction of the acoustic radiation from submerged elastic structures immersed in either 

infinite, half-space or finite depth fluid domains. AVAST combines both the finite element method 

for the structure and the boundary integral equation technique for the fluid. The finite element method 

(FEM) is used to define the mechanical mobility matrix relationship between excitation forces (in a 

particular direction and at a particular frequency) and structural velocities at fluid/structure interface 

nodes. The boundary integral equation method (BIEM) is used to generate a system of equations 

relating surface velocities to fluid acoustic pressures. 

In an attempt to make the modelling of sound radiated from submerged structures more 

realistic, several enhancements have recently been incorporated into the previously existing AVAST 

suite. These include the development and implementation of a four-noded fluid panel element, the 

incorporation of an eigenvalue extraction method, plus the option to use structural displacements 

generated by the COUPLE [1] program when computing the acoustic pressure field. 

In the discussion which follows, details concerning the development and incorporation of these 

latest enhancements to the AVAST suite will be presented. 
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2.1 

2. DEVELOPMENT OF A FOURwNODED ACOUSTIC PANEL ELEMENT 

2.1 Introduction 

In Phases I and II of this work [2,3] solution techniques based on a three-noded constant 
pressure fluid panel and an eight-noded isoparametric fluid element were developed and implemented 
in the A VAST suite. Unfortunately neither fluid element preserves compatibility with the four-noded 
structural shell element found in the VAST element library [4]. As a result, a four-noded constant 
pressure acoustic fluid panel has been developed and incorporated into the latest version of the AVAST 
code. 

In the following sections, a description of the mathematical formulation and numerical 
implementation of the new four-noded acoustic fluid panel will be presented. This will be followed 
by a series of numerical trials which will demonstrate the reliability of this latest addition to AVAST 
fluid element library. 

2.2 Boundary Integral Equation Formulation 

The boundary integral formulation governing the response of an exterior acoustic fluid, 
bounded by a surfaceS, is provided below in Equation (2.1), 

(2.1) 

where 1/; represents the acoustic pressure, k represents the acoustic wavenumber, n represents the 
outward normal to the surface S, p represents a point on the surface S and Mk and Lk denote integral 
operators, which may be defined as: 

{Lk~}(p) = f Gk(p,q) ~(q)dSq (2.2) 
9 

(2.3) 
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2.2 

where in Equations (2.2) and (2.3) nq is the unit outward normal to the surfaceS at a point q, p.(q) is 

, a bounded function defined for q on S [5], and Gk(p,q) is the Green's function which satisfies the 

Helmholtz equation (5), which in the case of an infinite three-dimensional fluid domain, has the form 

provided in Equation (2.4), 

(2.4) 

where rpq represents the distance between the two points p and q. 

2.3 Numerical Implementation of the Boundary Integral Method Using Collocation 

The numerical implementation of the boundary integral equation method, commonly referred 

to as the boundary element method, is derived by replacing the surface S by an approximate surface 

and the bounding functions by a linear combination of basis functions [6]. The symbol S is used to 

represent the approximate surface and can be written as the sum of a series of m four-noded boundary 

elements or panels, 

(2.5) 

where llS1 represents the portion of the original surface S discretized by the j-th four-noded 

quadrilateral boundary element. Having now replaced S with S, the boundary function p.(q) may be 

replaced by j1(q), and the integral operators Lk and Mk may be replaced by the operators ik andM k 

with respect to the approximate boundary S, 

{ikjl}(p) = f Gip,q) jl(q)dSq 
s 

(2.6) 

(2.7) 

Z026.RP'I' 



2.3 

Collocation of the boundary function P,(q) then permits the definition of a discrete form of 

{Lkil}(p) and {Mkp.}(p). Let P1, P2, ... ,Pm be them collocation points and let XpX2, ... ,xm be basic 
functions having the properties, 

m 

I: Xj(q) = 1 for q on S 
jzl 

The boundary function P,(q) may then be approximated as follows, 

m 

P.(q) "" ~ il(Pi)xi(q) for q on S 
j=l 

(2.8) 

(2.9) 

(2.10) 

The substitution of the approximation given above in Equation (2.10) into the definitions for the 

integral operators (Equations (2.6) and (2. 7)) allows for their expression in discrete form, 

(2.11) 

(2.12) 

The discrete operators may also be written in more familiar matrix notation, 

(2.13) 

(2.14) 

where Lk and P-k are m by m matrices. Substitution of Equations (2.13) and (2.14) into Equation (2.1) 

then yields the bQUndary element formulation of the exterior acoustic rad!ation problem, given below 

in Equation (2.15), 
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2.4 

(2.15) 

where 

JJL = [ liT(P 1)• liT(P 2)•···• liT(P m) f 

~ = [ ~! (P1), ~! , ... , ~! (P m)r 

2.4 Numerical Evaluation of the Discrete Fonns Using a Four-Noded Boundary Element 

When the fluid boundary S is discretized into small, four-noded quadrilateral panel elements, 

the acoustic pressure ( t/1) and pressure gradients ( ~!) are assumed to be constant over each element. 

This leads to the following forms for the matrix components, 

(2.16) 

(2.17) 

Before evaluating the integrals provided above, the four-noded quadrilateral element is first projected 

onto a plane passing through its centroid, as shown in Figure 2.1. By doing so, a single unique value 

for the surface normal is imposed over the element [7]. Once this has been completed, the projected 

surface is mapping into a e-1] two-dimensional space using the following shape functions, 

4 

P(e,1')) = ~ N1(E,1'J) 
l-1 

(2.18) 
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2.5 

where 

Nl (E,fl) 
1 = - (1-e) (1-fl) 
4 

N2(E,fl) 
1 

;;;: (1 +e)(1-fl) 
4 

(2.19) 

N3(E,fl) 
1 

;;;: - (1-e) (1 +fl) 
4 

N4(E,fl) 
1 = - (1-e) (1-fl) 
4 

Gaussian numerical integration is then used to evaluate the matrix coefficients given in 

Equations (2.16) and (2.17). For cases where the points p and q reside on the same panel, special 

techniques are used to extract the resulting singularity from the integral kernel. These singular terms 

are evaluated separately before being re-combined with the regular term. These singularity handling 

techniques are well documented in the literature [8]. 

2.5 Numerical Example 

In order to verify the accuracy of the new four-noded acoustic panel, the sound radiated from 

a uniformly pulsating sphere was modelled and compared to its exact analytical solution [8] (as shown 

in Figure 2.2). Although challenging, the four-noded panel was able to model the spherical geometry 

extremely well. 

Z026.RPT 



2.6 
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FIGURE 2.1: Quadrilaterial Panel Projection 
(Reproduced From [7]) 
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3.1 

3. MODAL ANALYSIS OF ACOUSTICALLY LOADED STRUCTURES VIA INTEGRAL 
EQUATION METHODS 

3.1 Introduction 

In this chapter, the problem of computing the frequency response and natural frequencies of 
a linear elastic structure in contact with an acoustic medium is considered. This work was prompted 
by a recent study [9] which reviewed a number of numerical methods commonly used to predict 
radiated noise generated by submerged elastic structures. These methods (including both finite element 
and integral equation methods) differed most significantly in the approach adopted for modelling both 
the structural response and fluid/structure coupling. In order to evaluate the performance of the 
different numerical schemes, numerical predictions were compared to both analytical results and 
experimentally measured values. These tests showed that methods which exploit the eigenvalues and 
associated eigenmodes of the "wet" structure provide a more accurate picture of the radiated noise 
patterns than do other techniques. This was especially true when the structure was loaded at a resonant 
frequency. 

In light of these recent findings, and due to interest in modelling the acoustic response of 
submerged structures excited at the coupled fluid/structure natural frequencies, it has been proposed 
that a eigenvalue extraction technique be incorporated into an upgraded version of the AVAST code. 
In the sections which follow, a method capable of computing the natural frequencies of the complex, 
nonsymmetric and frequency dependent matrices resulting from the coupling of the equations governing 
the fluid and structural responses will be described. This will be followed by a number of examples 
which will demonstrate the utility of this new technique. 

3.2 Solution of the Helmholtz Eigenvalue Problem Via the Boundary Element Method 

In this section, a computational method for solving the Helmholtz eigenvalue problem, based 
to a large degree on the work of Stephen Kirkup [10,11], is described. The problem is that of finding 
the values of the acoustic wavenumber k and a nontrivial scalar function if; such that the Helmholtz 
equation, 
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3.2 

(3.1) 

is satisfied in a fluid domain D with boundary S and subject to a homogeneous boundary condition of 

the form, 

a 
a(p) t(r(p) + b(p)- t(r(p) = 0 

anp 
(3.2) 

where a(p) and b(p) are !mown complex-valued functions of p and nP is the unit outward normal to the 

boundary atp. According to Kirkup [11], the nontrivial solutions k=k" and if;(p) = if;"(p) are termed 

the eigenfrequencies and eigenfunctions, and they are dependent on the boundary Sand the boundary 

functions a (p) and b (p). It is also important to note that the eigenfrequencies are all expected to be real 

numbers or complex numbers having relatively small imaginary components. 

The Helmholtz eigenvalue problem is amenable to solution via a number of techniques, 

including both the finite difference and finite· element methods. In these cases, the problem reduces 

to that of solving a generalized linear eigenvalue problem of the form, 

(3.3) 

Given the special structure of the matrices and .the fact that a variety of standardized solution techniques 

are available, the eigenfrequency analysis of the Helmholtz problem via the finite element or finite 

difference method is straightforward. In contrast, the application of the boundary element method 

reduces the Helmholtz eigenvalue problem to that of solving an eigenvalue problem of the form, 

(3.4) 

where the matrix Ak is fully populated, with each component being a continuously differentiable 

complex-valued function of k [11]. 

3.2.1 Literature Review 

The problem of solving the Helmholtz eigenvalue problem via boundary element-type methods 

has been given some consideration by researchers. One of the earliest !mown papers published on this 
' 

topic is attributed to Banerjee, Ahmad and Wang [12]. Their formulation was based on the method 

of constructing a solution of a differential equation in terms of a complementary function and particular 
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integral. This leads to a system of equations similar to that given in Equation (3.3), which could then 
be solved using a block iteration algorithm similar to that found in the EISPACK library [13]. Coyette 
and Fyfe [14], in a subsequent study, applied a subspace iteration scheme to the method of Banerjee, 
et al., which, according to the authors, greatly enhanced the calculation speed. More recently, 
Rajakumar and Ali [15] used the method of Banerjee et al. to compute the modal characteristics of 
acoustical cavities having sound absorptive characteristics. In this work, the acoustic boundary element 
eigenproblem was first set up as shown by Banerjee [12], then a simple method of incorporating the 
boundary absorption into the boundary element formulation was then described. Finally, the resulting 
quadratic eigenvalue problem was solved using the Lanczos algorithm. 

An alternative to the techniques descr~bed above was recently published by Kirkup and Amini 
[11]. In their paper, they describe a method which approximates each component of the matrix Ak by 
a polynomial ink over some subrange of the full wavenumber range. This permitted the reformulation 
of the nonlinear eigenvalue problem, given in Equation (3.4), in the form of a standard generalized 
eigenvalue problem. As a result, all the eigenvalues in the sub range could, be computed simultaneous­
ly. The method was applied to the axisymmetric three-dimensional problem where the surface was a 
sphere. The effectiveness of the method was studied through considering the results of varying the 
width of the wavenumber subrange, the n~mber of boundary elements and the degree of the 
interpolating polynomial. 

3.2.2 Recommendations Based on LiteratUre Review 

After reviewing the numerical procedures outlined in the literature, the method of Kirkup and 
Amini [11] appears to be the most suitable for implementation in the current A VAST program. The 
other techniques, based largely on the work of Banerjee et al., are not well suited for problems which 
may include nonzero surface velocity boundary conditions, which is of great interest to users of the 
AVAST suite. 

3.3 A Review of the Frequency Interpolation BEM Eigenvalue Extraction Technique 

The first step in Kirlrup's frequency interpolation technique is the selection of a wavenumber 
interval. krk2, where k1 S.k:5.k2• Next, the discrete forms {.ikx}(p) and {.Mkx}(p) are evaluated at 
a set wavenumbers, "f, TJ, A. (see Equation 3.7) spanning the wavenumber interval. The number of 
interpolation wavenumbers depends on the order of the polynomial used to approximate the discrete 
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forms. At present, a quadratic interpolation scheme has been developed for AVAST .. This leads to 

the following expressions for the discrete operators, 

{ikx}(p) .. {iyx}(p) .+ !(k-y)[{i
11

x}(p) - {fyx}(p)] 

+ 2~ <k-y)(k-fl)[{ir x}(p) - 2{£11 x}<P) + {£A x}(p)] 

{Mkx}(p) .. {Mvx}(p) + !<k-y)[{M11 x}(p) - {Mvx}(p)] 

+ 2~<k-y)(k-fl)[{Mvx}(p) - 2{M11 x}(p) + {MAx}(p)]. · 

where: 

y = k1 + ! (2 -..f3J(k2 -k1) 

1 
11 = 2 (kl +kz) 

A. = k1 + ! (2 +..f3J(k2 -k1) 

are the Chebychev quadratic interpolation points for the interval [kP/s] and 

The above forms of {fkx}(p) and {Mkx} may be reduced to the following matrix forms, 

where 

{ikx}(P1) = [Lk]ij = [Lo)ij + k[L1]ij + k2 [~]ij 

{Mkx}(P1) = [Mk)ij ·= [M0)ij + k[M1)ij + k2 (M2)ij 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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3.5 

[LoW = {fyx}(Pi) - ~[{fTJxi}(Pt) - {fyxj}(Pt)] 

+ ;; [{fy xj}(Pi) - 2{£TJ x}(P~) + {fy x}(Pt)] 
(3.10) 

[L1)ij = ~[{fTJx}(Pi) - {fyxj}(Pt)] 
(3.11) - <~;r) [{fyx}(Pt) - 2{£TJx}(Pi) + {fyxj}(Pt)] 

(3.12) 

[M0]ij = {.MY xi}(Pt) - ~ [{.MTJ xj}(Pt) - {My x}(P1)] 

(3.13) 
+ ;; [{.My xi}(Pt) - 2{M11 x}(Pt) + {My x}(Pt)] 

[M1)ij = ~ ({MTJ xi}(Pi) - {.Mr x}(Pi)] 
(3.14) 

- <~;J) [{.Mr x}(Pt) - 2{M, xj}(Pt) + {My xj}(Pt)] 

with the discrete forms of the integral operators given in Equations (3.8) and (3.9), the following 
relationship between acoustic pressure and its gradient with respect to the surface normal can be 
generated, 

where: 

represents the vector of acoustic pressures 

represents the vector of aw an 

(3.16) 
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3.6 

With the Helmholtz equation now in the form provided above in Equation (3.16), the nonlinear 

eigenvalue problem described by Equation (3.4) can be replaced with the following eigenvalue 

problem: 

(3.17) 

with the solution of Equation (3 .17) being the same as those of the following generalized linear 

eigenvalue problem, 

[
(A0) [A1J]J !l} = k [ 0 -[Az]]J J.l} 
0 [J] ·~~ [I] 0 ~~ 

(3.18) 

3.4 Verification of the Frequency Interpolation BEM Eigenvalue Extraction Technique 

In order to verify that the frequency interpolation scheme (FIS) proposed by KirkUp would be 

appropriate for use with the AVAST suite, a computer program based on the FIS was developed and 

the output compared to data published in a similar study [11]. The solver used to compute the 

eigenfrequencies of the assembled matrix given in Equation (3.18) was the ZGEGV LAPACK [16] 

routine, which is based on the QZ algorithm [17]. 

The verification tests involved calculating the Dirichlet (_JJ. = Q) and Neumann(¥ = 0) 

eigenfrequencies of a sphere having a radius of 1.0. For the Dirichlet problem the generalized 

eigenvalue problem has the following form, 

(3.19) 

whereas the equation related to the Neumann eigenvalue problem has the following form, 

(3.20) 

The results from these tests, provided in Table 3.1 and Table 3.2, show excellent agreement with both 

data published by Kirkup [11] and analytical values, indicating that the FIS has significant potential as 

a method for computing eigenvalues of matrices generated by the boundary integral equation method. 
I 
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3.5 Estimating Coupled Fluid/Structure Natural Frequencies Using the Frequency 
Interpolation Method 

3.7 

The coupling of the governing finite element based structural equation and the boundary 
element based fluid equation leads to the following nonlinear eigenvalue problem, 

(3.21) 

where: 

[K] represents the structural stiffness matrix 
[C] represents the structural damping matrix 
[Ms] represents the structural mass matrix; 
[T] represents a transformation matrix between global cartesian coordinates and "wet'' surface 

normal coordinates 
[A) represents the diagonal panel area matrix 
[Mw] represents the discrete form of the integral operator {Mwf.L} (see Equation2.3) 
[Lw] represents the discrete form of the integral operator {Lw f.L} (see Equation 2.2) 
p represents the fluid density 
w represents the driving frequency 
.Q represents the vector of nodal structural displacements 

Equation (3.21) can be replaced, however, with the following restatement of the eigenvalue problem: 

(3.22) 

where the matrices [Mar], [Ma2] and [Ma3J represent the frequency interpolated components of the 
"acoustic added mass" matrix p[1]T[A][Mwr1 [Lw]PJ. In this form, the coupled eigenvalue problem 
can be solved using the same standard methods used to solve equations of the type given below, 

(A0) (A 1) (A2) (A3) 
Q 0 0 0 -(A4) Q 

0 [I] 0 0 U>Q [I] 0 0 0 U>Q 
(3.23) = U> 

0 0 [I] 0 w2.Q 0 [I] 0 0 w2.Q 

0 0 0 [I] W3Q 0 0 [I] 0 w3.Q 

where, for our purposes, 

(Ao] = [Kj 

(Al) = i[C] 

[A2) = -[Ms] -(Ma1] 
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= 
= 

3.5.1 Wet Mode/Dry Mode Approach 

Because of the significant computational requirements imposed by the direct solution of Equation 

(3.23), the decision was made to calculate the coupled, or wet, natural frequencies using a method based 

on the wet mode/dry mode algorithm employed in the VAST finite element code [4]. Essentially, this 

method uses the natural frequencies and mode shapes of the "dry" structure to transform Equation (3.22) 

into the following form, 

(3.24) 

where: 

[<I>] represents a matrix whose columns are the dry structural mode shapes orthogonalized with 

respect to the structural mass matrix 
cui represents the i-th natural frequency of the dry structure 

{ 
0 i'l-j 

[Q] .. = 2 •• 
ZJ wi l=J 

u. represents a vector of generalized displacements, where [<I>]u = .Q. 

A computer program, based on this wet mode/dry mode approach, has been developed and 

recently incorporated into an upgraded version of the AVAST code. Preliminary testing indicates that 

this method is a highly effective tool for the prediction of coupled fluid/structure natural frequencies. 

3.6 AVAST Frequency Response Capability 

With the successful development of the eigenvalue extraction technique, it was decided to add 

a frequency response capability to the current AVAST program. Such a feature would allow users to 

compute the response of the "wet" structure using the modal characteristics of the dry structure. The 

governing equation for the frequency response of the coupled fluid/structure system has the form given 

below in Equation (3.25), 
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3.9 

(3.25) 

where [Ma(w)] is the frequency dependent acoustic added mass matrix and[ represents a vector of 

structural nodal forces. 

By adopting the mode shapes and natural frequencies of the dry structure, the governing 
equation of motion for the coupled system can be converted into a generalized coordinate system 
having the form, 

(3.26) 

where g represents the applied structural load transformed into the generalized coordinate system. 
Equation (3 .26) can be simplified by restricting the structural damping to have the following form, 

(3.27) 

Substituting Equation (3.27) into (3.26) then yields, 

(3.28) 

Solving for the generalized displacements using Equation (3 .28) then yields the following expression, 

u ;:;: [A] fl (3.29) 

where the matrix [A] may be defined as, 

(3.30) 

3.6.1 Validation of the A VAST Frequency Response Feature 

In order to verify that the results generated by the AVAST frequency response algorithm were 
reasonable, a series of numerical trials were performed using two models representing DREA' s acoustic 
rest cylinder. A detailed description of the acoustic cylinder is provided in Reference [19]. The first 
model (CYLN1), shown here in Figure 3.1, is similar to the actual physical cylinder in most respects, 
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except that it is modelled without endcaps and stiffeners. Omitting these features was justified on the 

basis of model size reduction and solution speed. In addition, model CYLNl had the translational 

degrees-of-freedom fixed at both ends (a situation not found in the physical model tests). A second 

model was also developed for this study (CYLN2). This model being identical to CYLNl, except that 

all boundary conditions were omitted. Both models were loaded using a single point load, having a 

magnitude of lON, acting radially outward and located at a point positioned on the mid-plane of the 

cylinder (see Figure 3.1). Field pressures were then computed for a number of points forming a "ring" 

surrounding the cylinder (see Figure 3.2). 

Figures 3.3 through 3.8 provide polar plots of the acoustic field pressures produced by the 
' 

CYLN1 model when loaded at frequencies c9rresponding to the first six "wet" natural modes of the 

constrained structure. The deformed shapes c?rresponding to these nodes are provided in Figures 3.15 

through 3.20, respectively. Figures 3.9 through 3.14 provide polar plots of the acoustic field pressures 

produced by the CYLN2 model when loaded ~t frequencies corresponding to the first six "wet" natural 

modes of the "free-free" structure. The deformed shapes corresponding to these modes are provided 

in Figures 3.21 through 3.25, respectively. 

A comparison of Figures 3.3 through 3.14 with similar results produced by the actual test 

cylinder does seem to indicate that the algorithms now found in the AVAST code are capable of 

predicting the sound pressure levels and acou~tic signatures of submerged elastic structures. 
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TABLE 3.1: Computed Dirichlet Eigenfrequencies 

Mode# Analytical Value Kirk:up [11] Martec 

1 3.14159 3.142+i0.00051 3.147 +i0.00083 

2 4.49341 4.49002+i0.00029 4.557+i0.00042 

3 5.76346 5. 7575-i0.000422 5.842-i0.0001 

4 6.28319 6.27428-i0.00055 6.46-i0.00038 

TABLE 3.2: Computed Neumann Eigenfrequencies 

Mode# Analytical Value Kirk:up [11] Martec 

1 3.14159 l 3.344+i0.0156 3.156 + iO .0004 
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FIGURE 3.1: Finite Element Model of the CYLN2 Model 
(Position of the Load is Marked With the Label "F") 



3.13 

FIGURE 3.2: Ring of Field Point Locations (in blue) Surrounding the Mid-Plane of the Cylinder 



3.14 

270 

FIGURE 3.3: Field Pressures Produced by the CYLNl Model Vibrating 
at the First Coupled Natural Frequency 

0 
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FIGURE 3.4: Field Pressures Produced by the CYLNI Model Vibrating 
at the Second Coupled Natural Frequency 

0 

3.15 
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270 

FIGURE 3.5: Field Pressures Produced by the CYLNl Model Vibrating 
at the Third Coupled Natural Frequency 

0 
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FIGURE 3.6: Field Pressures Produced by the CYLNl Model Vibrating 
at the Fourth Coupled Natural Frequency 

0 

3.17 
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270 

FIGURE 3.7: Field Pressures Produced by the CYLNl Model Vibrating 
at the Fifth Coupled Natural Frequency 

0 
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FIGURE 3.8: Field Pressures Produced by the CYLNl Model Vibrating 
at the Sixth Coupled Natural Frequency 
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3.19 
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900.12 

270 

FIGURE 3.9: Field Pressures Produced by the CYLN2 Model Vibrating 
at the First Coupled Natural Frequency 

0 
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FIGURE 3.10: Field Pressures Produced by the CYLN2 Model Vibrating 
at the Second Coupled Natural Frequency 

0 

3.21 
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900.09 

270 

FIGURE 3.11: Field Pressures Produced by the CYLN2 Model Vibrating 
at the Third Coupled Natural Frequency 

0 
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270 

FIGURE 3.12: Field Pressures Produced by the CYLN2 Model Vibrating 
at the Fourth Coupled Natural Frequency 
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270 

FIGURE 3.13: Field Pressures Produced by the CYLN2 Model Vibrating 
at the Fifth Coupled Natural Frequency 

0 

2m6.RPT 



270 

FIGURE 3.14: Field Pressures Produced by the CYLN2 Model Vibrating 
at the Sixth Coupled Natural Frequency 

0 
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FIGURE 3.15: Deformed Shape of the CYLNl Model When Loaded at the First Wet Natural Frequency 
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FIGURE 3.16: Defom1ed Shape of the CYLNl Model When Loaded at the Second Wet Natural Frequency 
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FIGURE 3.17: Deformed Shape of the CYLNI Model When Loaded ar the Third Wet Natural Frequency 
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FIGURE 3.18: Deformed Shape of the CYLNI Model When Loaded at the Fourth Wet Natural Frequency 
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3.30 

FIGURE 3.19: Deformed Shape of the CYLNl Model When Loaded at the Fifth Wet Natural Frequency 
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FIGURE 3.20: Deformed Shape of the CYLNI Model When Loaded at the Sixth Wet Natural Frequency 
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FIGURE 3.21: Deformed Shape of the CYLN2 Model When Loaded at the First Wet Natural Frequency 
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FIGURE 3.22: Deformed Shape of the CYLN2 Model When Loaded at the Second Wet Natural Frequency 
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FIGURE 3.23: Deformed Shape of the CYLN2 Model When Loaded at the Third Wet Natural Frequency 
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FIGURE 3.24: Deformed Shape of the CYLN2 Model When Loaded at the Fourth Wet Natural Frequency 
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f 

FIGURE 3.25: Deformed Shape of the CYLN2 Model When Loaded at the Fifth Wet Natural Frequency 
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4. INCORPORATION OF THE AVAST FLUID MODELLER INTO THE COUPLE CODE 

4.1 Introduction 

The COUPLE [I] program was developed primarily for the prediction of natural frequencies 
of coupled fluid/structure systems. The model of the structure is generated for a standard structural 
analysis and is run through the VAST program to the point where the mass and stiffness matrices are 
generated. The corresponding fluid model is generated and run through COUPLE to assemble the fluid 
stiffness and mass matrices. COUPLE then reads in the structural matrices and performs any necessary 
modifications, such as inverses or transposes to the two sets of matrices, before combining them in the 
desired form of assembled fluid/structure stiffness and mass matrices. The assembled stiffness and 
mass matrices are then run through the VAST program for decomposition and calculation of the 
coupled fluid/structure natural frequencies and mode shapes. Further analysis of the coupled system 
using the VAST frequency response capability and commercial boundary element code BEMAP allows 
for the prediction of acoustic radiation from models excited by external loads. 

Unfortunately, the version of BEMAP presently available at DREA cannot support the 
relatively large structural models currently of interest to the research staff. As a result, it was 
proposed that a modified version of the AVAST fluid modeller be incorporated into the COUPLE 
program. Since AVAST has no effective limit on the number of fluid degrees-of-freedom, models such 
as the one currently under development of the DREA barge facility may now be considered using an 
upgraded version of COUPLE suite. 

4.2 A VASTC Acoustic Modelling Routines 

In order to provide an acoustic modelling capability for users of the COUPLE program, a 
modified version of the AVAST code, named AVASTC (AVAST-COUPLE), is now available. The 
A V ASTC module ACSURF allows users to calculate acoustic pressures on the wet surface of the 
radiating structure by simply requiring the user to supply the names of the files which store the 
structural displacements generated via a VAST frequency aresponse analysis [4] and the geometric 
description of the wet structural surface (for details on the fluid geometry file, see Reference [20]). 
Once these surface acoustic pressures have been established, sound pressure levels throughout the fluid 
domain may be computed using the ACFIELD module. ACFIELD requires only the five character 
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prefix of the file (having the extension .EFP) which stores the cartesian coordinates of the locations 

where field pressures are to be calculated. ACFIELD will then produce an ASCII file, having the 

extension .FPR, which contains the real and imaginary components of the acoustic field pressures. 
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